Asked
Active
Viewed 51 times
0
-
$$2^{2m+1}-1 \equiv 2(-1)^m-1 \in {1,2}\pmod{5}$$ – Jack D'Aurizio Feb 27 '17 at 19:46
-
Quelle est votre question exactement? – Théophile Feb 27 '17 at 19:47
-
i need a proof of the => – djamel math Feb 27 '17 at 20:38
-
$!!\bmod 5!:,\ \left[1\equiv 2^{\large m}\right]^{\large 2}\Rightarrow, 1\equiv 4^{\large m}!\equiv (-1)^{\large m}!\equiv -1,\Rightarrow, 5\mid 2,\Rightarrow!\Leftarrow\ \ $ – Bill Dubuque Jan 03 '19 at 21:08
1 Answers
0
Hint :
$5$ is a prime number.
So, if a positive integer $d$ divides simultaneously $5$ and $2^n-1$ and if $d\neq 1$, then ...

Adren
- 7,515
- 10
- 26