Let $$I = \int^{\infty}_{0}\frac{1}{a^6+\bigg(x-\frac{1}{x}\bigg)^6}dx$$
substitute $\displaystyle x= \frac{1}{t}$ Then $$I = \int^{\infty}_{0}\frac{1}{a^6+\bigg(t-\frac{1}{t}\bigg)^6}\cdot \frac{1}{t^2}dt = \int^{\infty}_{0}\frac{1}{a^6+\bigg(x-\frac{1}{x}\bigg)^6}\cdot \frac{1}{x^2}dx$$
So $$2I = \int^{\infty}_{0}\frac{1}{a^6+\bigg(x-\frac{1}{x}\bigg)^6}\cdot \bigg(1+\frac{1}{x^2}\bigg)dx$$
Substitute $\displaystyle \bigg(x-\frac{1}{x}\bigg)=u,$ then $\displaystyle \bigg(1+\frac{1}{x^2}\bigg)dx = du$
so $$2I = \int^{\infty}_{-\infty}\frac{1}{a^6+u^6}du = 2\int^{\infty}_{0}\frac{1}{a^6+u^6}du=\frac{2}{a^6}\int^{\infty}_{0}\frac{1}{1+\left(\frac{u}{a}\right)^6}du$$
put $\displaystyle \frac{u}{a} = v\;,$ then $\displaystyle I = \frac{1}{a^5}\int^{\infty}_{0}\frac{1}{1+v^6}dv = \frac{\pi}{6a^5}\cdot \frac{1}{\sin \frac{\pi}{6}} = \frac{2\pi}{6a^5} = \frac{\pi}{3a^5}$
Show that $\int_0^ \infty \frac{1}{1+x^n} dx= \frac{ \pi /n}{\sin(\pi /n)}$ , where $n$ is a positive integer.