$$I=\int_0^{\frac{\pi}{2}} \frac{\cos^{2008} (x)}{\sin^{2008} (x)+\cos^{2008} (x)}~dx$$
I hope anyone can answer this definite integral.
$$I=\int_0^{\frac{\pi}{2}} \frac{\cos^{2008} (x)}{\sin^{2008} (x)+\cos^{2008} (x)}~dx$$
I hope anyone can answer this definite integral.
Enforcing the substitution $x\to \pi/2-x$ yields
$$\int_0^{\pi/2}\frac{\cos^{2008}(x)}{\cos^{2008}(x)+\sin^{2008}(x)}\,dx=\int_0^{\pi/2}\frac{\sin^{2008}(x)}{\cos^{2008}(x)+\sin^{2008}(x)}\,dx$$
Hence,
$$\int_0^{\pi/2}\frac{\cos^{2008}(x)}{\cos^{2008}(x)+\sin^{2008}(x)}\,dx=\frac12\int_0^{\pi/2}\frac{\cos^{2008}(x)+\sin^{2008}(x)}{\cos^{2008}(x)+\sin^{2008}(x)}\,dx=\pi/4$$
Hint...substitute $u=\frac{\pi}{2}-x$ and you get the same integral but with $\sin$ in the numerator. So $2I=$?