Question: Consider the smooth map $$F : M(n , \mathbb{R} ) = \mathbb{R}^{{n}^{2}} \to S(n,\mathbb{R}) = \mathbb{R}^{\frac{n(n+1)}{2}} \hspace{1cm} A \mapsto AA^{T}$$ As the differential $$dF_A : T_A M(n,\mathbb{R}) = M(n,\mathbb{R}) \to T_{I}S(n,\mathbb{R}) = S(n,\mathbb{R}).$$ Show that for every $A \in O(n)$, $$T_A O(n) = \ker dF_A = \left\{ B \in M(n,\mathbb{R}) : A^{T}B + B^{T}A = 0 \right\} $$
Notation: $$M(n, \mathbb{R}) = \left\{ A \space\ | \space\ A \space\ \text{is an} \space\ n \times n \space\ \text{matrix} \right\}$$ $$S(n, \mathbb{R}) = \left\{ A = A^{T} \space\ | \space\ A \in M(n, \mathbb{R}) \right\}$$ $$O(n) = \left\{ A^{-1} = A^{T} \space\ | \space\ A \in M(n, \mathbb{R}) \right\}$$
My ideas so far:
I have shown that $dF_A$ is onto for every $A \in O(n) = F^{-1}(I)$, and that the orthogonal group $O(n)$ is a submanifold of $M(n, \mathbb{R})$ of codimension $\frac{n(n+1)}{2}$.