Question: How do you prove$$_4F_3\left[\begin{array}{c c}\frac 12n+1,n,-x,-y\\\frac 12n,x+n+1,y+n+1\end{array};-1\right]=\dfrac {\Gamma(x+n+1)\Gamma(y+n+1)}{\Gamma(n+1)\Gamma(x+y+n+1)}\tag{1}$$For $\Re(2x+2y+n+2)>0$
I'm not sure how to prove this. There are a multitude of other similar formulas. Some of which$$\begin{align*}_4F_3\left[\begin{array}{c c}\frac 12n+1,n,n,-x\\\frac 12n,x+n+1,1\end{array};-1\right] & =\dfrac {\Gamma(x+n+1)}{\Gamma(n+1)\Gamma(x+1)}\end{align*}\tag{2}$$For $\Re(2x-n+2)>0$$$_3F_2\left[\begin{array}{c c}\frac 12n+1,n,-x\\\frac 12n,x+n+1\end{array};-1\right]=\dfrac {\Gamma(x+n+1)\Gamma\left(\frac 12n+\frac 12\right)}{\Gamma(n+1)\Gamma\left(x+\frac 12n+\frac 12\right)}\tag3$$ For $\Re(x)>-\frac 12$. I know that the general Hypergeometric Sequence can be written as$$_pF_q\left[\begin{array}{c c}\alpha_1,\alpha_2,\ldots,\alpha_p\\\beta_1,\beta_2,\ldots,\beta_p\end{array};x\right]=\sum\limits_{k=0}^\infty\dfrac {(\alpha_1)_k(\alpha_2)_k\cdots(\alpha_p)_k}{(\beta_1)_k(\beta_2)_k\cdots(\beta_p)_k}\dfrac {x^k}{k!}\tag4$$So $(1)$ becomes$$_4F_3\left[\begin{array}{c c}\frac 12n+1,n,-x,-y\\\frac 12n,x+n+1,y+n+1\end{array};-1\right]=\sum\limits_{k=0}^{\infty}\dfrac {\left(\frac 12n+1\right)_k(n)_k(-x)_k(-y)_k}{\left(\frac 12n\right)_k(x+n+1)_k(y+n+1)_k}\dfrac {(-1)^k}{k!}\tag{5}$$However, how do you manipulate the RHS of $(5)$ into the RHS of $(1)$. I think that there could be a sort of elementary transformation involved, but if so, I'm not sure what.