Every basic fact about computing derivatives is easiest to understand if you allow yourself to use infinitesimals, the use of infinitesimals can be rigorously justified, and it doesn't require using nonstandard analysis. Moreover, in practice the fastest way to compute derivatives of complicated functions by hand is to use infinitesimals.
Here's a random example. Suppose I wanted to compute the derivative of $\frac{e^t \cos t}{1 - \tan \log (1 + t)}$ at $t = 0$. You might think I would have to use the quotient rule, then the product rule in the numerator, then the chain rule twice in the denominator. But actually I can do something much faster, which is to pretend that $t^2 = 0$, or in other words to repeatedly take Taylor series and cut them off after the linear term, and then just use ordinary algebra. This produces
$$\frac{(1 + t)(1)}{1 - \tan t} = \frac{1 + t}{1 - t} = 1 + 2t$$
(because $(1 + t)(1 - t) = 1$, so $\frac{1}{1 - t} = 1 + t$). So the derivative at $t = 0$ is $2$. A similar trick where you pretend that $t^3 = 0$ can be used to compute second derivatives, which I'll demonstrate on the above example because maybe only getting the first derivative looked too easy: this produces
$$\frac{\left( 1 + t + \frac{t^2}{2} \right) \left( 1 - \frac{t^2}{2} \right)}{1 - \tan \left( t - \frac{t^2}{2} \right)} = \frac{1 + t}{1 - t + \frac{t^2}{2}} = (1 + t) \left( 1 + t + \frac{t^2}{2} \right) = 1 + 2t + \frac{3t^2}{2}.$$
So the second derivative is $3$.
Here's a harder and less elementary example. Consider the function $X \mapsto \det X$ where $X$ is a square matrix. What is its derivative at the identity $X = I$? Well, a standard fact about determinants tells you that
$$\det (1 + t X) = 1 + \text{tr}(X) t + O(t^2)$$
(where $O(t^2)$ - Big O notation - is one way of justifying more rigorously what I'm doing when I ignore second-order and higher terms in the Taylor series). The coefficient of the linear term is $\text{tr}(X)$, so that's the derivative. It is really annoyingly difficult to try to do this computation by writing out the formula for the determinant in full and then differentiating it; I've never tried and I don't plan to.
This method of computing derivatives is so easy you can teach a computer how to do it.