For future reference with this problem being tagged complex-numbers we
show how to evaluate the sum using residues. Suppose we are interested
in
$$S(n) = \sum_{k=0}^{n-1} \csc^2\left(x+\frac{k\pi}{n}\right)
= \sum_{k=0}^{n-1} \frac{2}{1-\cos\left(2x+\frac{2k\pi}{n}\right)}.$$
where we take $x$ to be a real number.
With $$f(z) = \frac{4}{2-\exp(2ix)z-1/\exp(2ix)/z}
\frac{nz^{n-1}}{z^n-1}$$
or alternatively
$$f(z) = \frac{4}{2-\exp(2ix)z-1/\exp(2ix)/z} \frac{1}{z}
\frac{n}{z^n-1}
\\ = \frac{4}{2z-\exp(2ix)z^2-1/\exp(2ix)}
\frac{n}{z^n-1}
\\ = -\frac{4\exp(-2ix)}{z^2 - 2z\exp(-2ix) + \exp(-4ix)}
\frac{n}{z^n-1}
\\ = -\frac{4\exp(-2ix)}{(z-\exp(-2ix))^2}
\frac{n}{z^n-1}$$
we get for the sum with $\zeta_k = \exp(2\pi i k/n)$
$$\sum_{k=0}^{n-1} \mathrm{Res}_{z=\zeta_k} f(z)$$
which means we can evaluate the sum using the negative of the residues
at $z=\exp(-2ix)$ and at infinity. Note however that with $R$ the
radius of a circle going to infinity we get that $f(z)$ is
$\theta(1/R^{n+2})$ and $2\pi R \times 1/R^{n+2} = 2\pi \times
1/R^{n+1}$ vanishes so the residue at infinity is zero. That leaves
for the other residue
$$\left.
\left(-\frac{4n\exp(-2ix)}{z^n-1}\right)'\right|_{z=\exp(-2ix)}
= \left.\frac{4n\exp(-2ix)}{(z^n-1)^2} \times n z^{n-1}
\right|_{z=\exp(-2ix)}
\\ = \frac{4n^2\exp(-2inx)}{(\exp(-2inx)-1)^2}
= -\frac{(2i)^2 n^2}{(\exp(-inx)-\exp(inx))^2}.$$
We obtain
$$S(n) -\frac{(2i)^2 n^2}{(\exp(inx)-\exp(-inx))^2} = 0$$
or
$$\bbox[5px,border:2px solid #00A000]{
S(n) = n^2 \csc^2(nx).}$$