$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
Since
$\ds{%
\sin\pars{x} \over x}
=
{1 \over 2}\int_{-1^{-}}^{1^{+}}\expo{\ic kx}\,\dd k$, we have:
\begin{align}
{\large\int_{-\infty}^{\infty}{\sin^{2}\pars{x} \over x^{2}}\,\dd x}
&=
\int_{-\infty}^{\infty}\dd x\,{1 \over 2}\int_{-1^{-}}^{1^{+}}\expo{\ic kx}\,\dd k\,
{1 \over 2}\int_{-1^{-}}^{1^{+}}\expo{\ic qx}\,\dd q
\\[3mm]&=
{\pi \over 2}\int_{-1_{-}}^{1^{+}}\dd k\int_{-1_{-}}^{1^{+}}\dd q
\int_{-\infty}^{\infty}\expo{\ic\pars{k + q}x}\,{\dd x \over 2\pi}
=
{\pi \over 2}\int_{-1^{-}}^{1^{+}}\dd k
\int_{-1_{-}}^{1^{+}}\dd q\,\delta\pars{k + q}
\\[3mm]&=
{\pi \over 2}\int_{-1^{-}}^{1^{+}}\Theta\pars{1 - \verts{k}}\,\dd k
=
{\pi \over 2}\int_{-1^{-}}^{1^{+}}\dd k = {\large \pi}
\end{align}