Find all solutions using the Chinese Remainder Theorem.
$$ \begin{cases}x \equiv 3 \pmod{4}\\ x \equiv 5 \pmod{21}\\ x \equiv 7 \pmod{25} \end{cases}$$
I can see that $4$,$21$, and $25$ are all pairwise relatively prime. I then proceeded to use$ Z=(C_1)\times(X_1)\times(B_1) +(C_2)\times(X_2)\times(B_2) +(C_3)\times(X_3)\times(B_3)$. Let $C_i $ be the remainder and$ b_i$ be the modulus. $3=C_1,5=C_2,7=C_3$. $4=b_1,21=b_2,25=b_3$.
Let $B=b_1\times b_2\times b_3$ Let $B_i=B/b_i$ Then, $525=B_1,100=B_2,84=B_3$
Now I try and solve $(B_i)(X_i)≡ 1 \mod b_i$
I can see that $(B_1)(X_1)≡ 1 \mod b_1 $yields $525(X_1)≡ 1 \mod 4 $with$ X_1 $being $1$. For $(B_2)(X_2)≡ 1 \mod b_2$, I get $100(X_2)≡ 1 \mod 21$. $X_2$ turns out to be $-1$. For $(B_3)(X_3)≡ 1 \mod b_3 = 84(X_3)≡ 1 \mod 25$, I needed to use the extended euclidean algorithm to find the gcd and $X_3$, which turned out to be $-11$.
Work:
$$m \;n \; q \; r$$ $$\\84\;25 \;3 \;9$$ $$\\25 \;9 \;2 \;7$$ $$\\9 \;7 \;1\; 2$$ $$\\7 \; 2 \;3 \;1$$
$1=7-(3\times2) \\=7-(3(9-7))=(4\times7)-(9\times3) \\=(4(25-(9\times2)))-(9\times3)=(4\times25)-(9\times-11) \\=(4\times25)-(11(84-(25\times3)))=(37\times25)-(11\times84)$
Thus, $X_3=-11$
It turns out that I computed the wrong $(X_2)$, it is instead $4$.
With this, I can compute the correct $Z$ such that it will satisfy the three congruence equations.
$Z=(3\times525\times1)+(100\times5\times4)+(84\times7\times-11)=-2893$ Using a calculator, I found that
$$Z \equiv 3 \pmod{4}$$ $$Z \equiv 5 \pmod{21}$$ $$Z \equiv 7 \pmod{25}$$