Following the idea suggested to pass the problem to the complex:
$$\sum_{k=1}^{n}\sin\left({\pi\over 2}\cdot{4k-1\over 2n+1}\right)=\Im\left(\sum_{k=1}^{n}\exp\left(i{\pi\over 2}\cdot{4k-1\over 2n+1}\right)\right)$$
Now, let us manipulate the exponentials directly.
$$\exp\left(i{\pi\over 2}\cdot{4k-1\over 2n+1}\right)=\exp\left(i{\pi\over 2}\cdot{1\over 2n+1}\right)\exp\left(i{\pi\over 2}\cdot{4k-2\over 2n+1}\right)$$
$$\sum_{k=1}^{n}\exp\left(i{\pi\over 2}\cdot{4k-1\over 2n+1}\right)=\exp\left(i{\pi\over 2}\cdot{1\over 2n+1}\right)\sum_{k=1}^{n}\exp\left(i{\pi\over 2}\cdot{4k-2\over 2n+1}\right)$$
Define $\theta=i{\pi\over 2}\cdot{1\over 2n+1}$ and $z=e^{2\theta}$. We can sum the geometric series.
$$\exp\left(i{\pi\over 2}\cdot{1\over 2n+1}\right)\sum_{k=1}^{n}\exp\left(i{\pi\over 2}\cdot{4k-2\over 2n+1}\right)=e^{\theta}\sum_{k=1}^ne^{2\theta(2k-1)}=$$
$$=e^\theta\sum_{k=1}^nz^{(2k-1)}=e^\theta\frac{1-z^{(2n+1)}}{1-z^2}=$$
$$=e^\theta\frac{1-e^{i\pi(2n+1)/(2n+1)}}{1-e^{4\theta}}=e^\theta\frac{1-e^{i\pi}}{1-e^{4\theta}}=\frac{2e^\theta}{1-e^{4\theta}}=$$
$$=\frac{2e^\theta}{e^{2\theta}(e^{-2\theta}-e^{2\theta})}=\frac{2e^{-\theta}}{e^{-2\theta}-e^{2\theta}}=$$
$$=\frac{2(\cos\theta-i\sin\theta)}{-2i\sin(2\theta)}=i\frac{\cos\theta}{\sin{2\theta}}+\frac{\sin\theta}{\sin{2\theta}}=$$
$$=i\frac{\cos\theta}{2\sin\theta\cos\theta}+\frac{\sin\theta}{2\sin\theta\cos\theta}=\frac{i}{2\sin\theta}+\frac{1}{2\cos\theta}$$
Now, take the imaginary part and reverse the changes, and we are done.
$$\sum_{k=1}^{n}\sin\left({\pi\over 2}\cdot{4k-1\over 2n+1}\right)=\Im\left(\frac{i}{2\sin\theta}+\frac{1}{2\cos\theta}\right)$$
$$\sum_{k=1}^{n}\sin\left({\pi\over 2}\cdot{4k-1\over 2n+1}\right)=\frac{1}{2\sin\left({\pi\over 2}\cdot{1\over 2n+1}\right)}$$