For the forward implication, given that $e = \lim_{x \to \infty} (1 + 1/x)^x$, we have for $n \in \mathbb{N}$
$$e = \lim_{n \to \infty}\left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty}\left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty}\left(1 + \frac{1}{n} \right)^{n+1}. $$
It s straightforward to show using Bernoulli's inequality that $(1+1/n)^n$ is increasing and $(1 + 1/n)^{n+1}$ is decreasing.
Hence,
$$\left(1 + \frac{1}{n} \right)^n \leqslant e \leqslant \left(1 + \frac{1}{n} \right)^{n+1},$$
and
$$1 \leqslant \frac{e^{1/n}-1}{1/n} \leqslant n\left[\left(1 + \frac{1}{n} \right)\left(1 + \frac{1}{n} \right)^{1/n}- 1\right] = (n+1)\left(1 + \frac{1}{n} \right)^{1/n}- n .$$
Using Bernoulli's inequality we have
$$(n+1)\left(1 + \frac{1}{n} \right)^{1/n} - n \leqslant (n+1) \left(1 + \frac{1}{n}\frac{1}{n}\right) - n = 1 + \frac{1}{n} + \frac{1}{n^2}.$$
Thus,
$$1 \leqslant \frac{e^{1/n}-1}{1/n} \leqslant 1 + \frac{1}{n} + \frac{1}{n^2}.$$
Applying the squeeze theorem we see that
$$\tag{*}\lim_{n \to \infty} \frac{e^{1/n}-1}{1/n} = 1.$$
Continuity and monotonicity of the exponential function $x \mapsto e^x$ can be used to show that (*) implies
$$\lim_{h \to 0} \frac{e^{h}-1}{h} = 1.$$