This is the limit:
$$\lim_{h\rightarrow 0}\dfrac{ \displaystyle\int^{\pi+he^{-\frac{1}{h}}}_{0}x^2e^{-x^2}dx-\int^{\pi}_{0}x^2e^{-x^2}dx}{he^{-\frac{1}{h}}}$$
In the site I've seen it proposed to calculate, two solutions have been shown, one of them (the more straightforward one) dismissed as incorrect and the other one accepted. I see more dubious the accepted proof, and this makes more ashtonishing for me the rejecting of the other.
I write the calculations proposed for you to judge. And my questions are: is the dismissal correct? and, if affirmative, why?
1.-
$$\lim_{h\rightarrow 0}\dfrac{\int^{\pi+he^{-\frac{1}{h}}}_{0}x^2e^{-x^2}dx-\int^{\pi}_{0}x^2e^{-x^2}dx}{he^{-\frac{1}{h}}} = \displaystyle \lim_{h\rightarrow 0}\dfrac{\int^{\pi+he^{-\frac{1}{h}}}_{\pi}x^2e^{-x^2}dx }{he^{-\frac{1}{h}}}$$
Making $x = \pi+h\,e^{-\frac{1}{h}}\,t \;\;\longrightarrow\;\;\text{dx} = h\,e^{-\frac{1}{h}}\,\text{dt}$
$$\lim_{h\to 0}\dfrac{\int^{\pi+he^{-\frac{1}{h}}}_{\pi}x^2e^{-x^2}dx }{he^{-\frac{1}{h}}} =\lim_{h\to 0}\int_{0}^{1} \left( \pi + he^{-\frac{1}{h} \, t}\right)^2 e^{-\left( \pi + he^{-\frac{1}{h} \, t}\right)^2} \text{dt}=$$
$$=\int_{0}^{1} \lim_{h\to 0}\left( \pi + he^{-\frac{1}{h} \, t}\right)^2 e^{-\left( \pi + he^{-\frac{1}{h} \, t}\right)^2}\text{dt} = \pi^2 e^{-\pi^2}$$
2.-
Let be $F(t)=\int_{0}^{t}x^2e^{-x^2}dx$, then $F'(t)=t^2e^{-t^2}$
Let be $\Delta t=+he^{-\frac{1}{h}}$, then $h\rightarrow{0}\Rightarrow{}\Delta t\rightarrow{0}$
$$\lim_{h\rightarrow 0}\dfrac{\int^{\pi+he^{-\frac{1}{h}}}_{0}x^2e^{-x^2}dx-\int^{\pi}_{0}x^2e^{-x^2}dx}{he^{-\frac{1}{h}}}=\lim_{\Delta t\rightarrow 0}\dfrac{\int^{\pi+\Delta t}_{0}x^2e^{-x^2}dx-\int^{\pi}_{0}x^2e^{-x^2}dx}{\Delta t} =\lim_{\Delta t \to 0}{}\frac{F(\pi+\Delta t)-F(\pi)}{\Delta t}=F'(\pi)=\pi^2e^{-\pi^2}$$