Consider the integral $(1)$
$$\int_{0}^{\infty}x\sin{x}\ln{(1-e^{-x})}\mathrm dx=I\tag1$$ How can we show that $$I=1-{\pi\over 2\tanh\pi}-{\pi^2\over 2\sinh^2{\pi}}$$
An attempt: Dealing with indefinite integral
$$\int x\sin{x}\ln{(1-e^{-x})}\mathrm dx=J\tag2$$
Apply integration by parts
$u=\ln{(1-e^{-x})}$ then $du={e^{-x}\over 1-e^{-x}}\mathrm dx$
$v=-\int x\sin{x}\mathrm dx=-x\cos{x}+\sin{x}$
$$J=(-x\cos{x}+\sin{x})\ln{(1-e^{-x})}-\int{e^{-x}\over 1-e^{-x}}(\sin{x}-x\cos{x})\mathrm dx\tag3$$
$$J=(-x\cos{x}+\sin{x})\ln{(1-e^{-x})}-\int\sum_{n=0}^{\infty}e^{x(1-n)}(\sin{x}-x\cos{x})\mathrm dx\tag4$$
$$J=(-x\cos{x}+\sin{x})\ln{(1-e^{-x})}-\sum_{n=0}^{\infty}\int e^{x(1-n)}(\sin{x}-x\cos{x})\mathrm dx\tag5$$
Let
Applying integration by parts
$$J_1=\int e^{x(1-n)}\sin{x}\mathrm dx={e^{x(1-n)}[(1-n)\sin{x}-\cos{x}]\over (1-n)^2+1}$$
$$J_2=\int xe^{x(1-n)}\cos{x}\mathrm dx={xe^{x(1-n)}[(1-n)\cos{x}+\sin{x}]\over (1-n)^2+1}-{e^{x(1-n)}[(n^2-2n)\cos{x}-2(1-n)\sin{x}]\over ((1-n)^2+1)^2}$$
So far applying integration by parts seem bit hard to resolve problem $(1)$, how else can we tackle $(1)?$
$$ I=J(1)-\partial_{\alpha}J(\alpha)|_{\alpha=1} $$
with
$$ J(\alpha)=\int_0^{\infty}\frac{\sin(\alpha x)}{e^x-1}=\sum_{n=0}^{\infty}\frac{(-1)^j\alpha^{2j+1}}{(2j+1)!}\int_0^{\infty}\frac{x^{2j+1}}{e^x-1}=\sum_{j=0}^{\infty}(-1)^j\alpha^{2j+1}\zeta(2j+2)\=-\frac{1}{\alpha}\sum_{j=1}^{\infty}(i)^{2j}\alpha^{2j}\zeta(2j)=\frac{\pi}{2}\coth(\alpha\pi)-\frac{1}{2 \alpha^2} $$
where we used the generating function of the $\zeta$-function...
– tired Feb 18 '17 at 13:29