In this case you cannot avoid using $a^b=\exp(b\ln(a))$.
You will need also $\frac{\ln(x)}{x}\to 0$ when $x\to+\infty$.
$f(x)=(x+2017)\times(x+2017)^\frac1x-x\times x^\frac1{x+2017}=$
$(x+2017)\times\exp(\frac{\ln(x+2017)}{x})-x\times\exp(\frac{\ln(x)}{x+2017})=$
The quantities inside the exponentials are going to $0$ so both exponentials are going to $1$.
If we simply use that : $(x+2017)\times(1+o(1))-x\times(1+o(1))=2017+o(x)\ $
then we cannot conclude because there is still a term that does not converge: $o(x)$ as $x\to+\infty$.
So we are forced to push the Taylor expansion forward, I'm afraid there is no shortcut this time.
$\exp\left(\frac{\ln(x+2017)}{x}\right)=
\exp\left(\frac{\ln(x)+\frac{2017}{x}+O(\frac{1}{x^2})}{x}\right)=
\exp\left(\frac{\ln(x)}{x}+O(\frac{1}{x^2})\right)=
1+\frac{\ln(x)}{x}+\frac{\ln(x)^2}{2x^2}+O(\frac{1}{x^2})$
$\exp\left(\frac{\ln(x)}{x+2017}\right)=
\exp\left(\frac{\ln(x)}{x}-\frac{2017\ln(x)}{x^2}+O(\frac{1}{x^2})\right)=
1+\frac{\ln(x)}{x}-\frac{2017\ln(x)}{x^2}+\frac{\ln(x)^2}{2x^2}+O(\frac{1}{x^2})$
And then report in $f(x)$.
$f(x)=(x+2017)\times\exp\left(\frac{\ln(x+2017)}{x}\right)-x\times\exp\left(\frac{\ln(x)}{x+2017}\right)=$
$x\times\left(0+O(\frac{1}{x^2})\right)+2017\times\left(1+\frac{\ln(x)^2}{2x^2}+O(\frac{1}{x^2})\right)=2017+O(\frac{1}{x})\to 2017$
Note: the term in $\frac{2017\ln(x)^2}{x^2}$ disappear because it is smaller than $O(\frac1x)$.