Let $C$ be a connected set in $\mathbb{R}$. Let $f:C\rightarrow \mathbb{R}$ be a function. Let $p$ be a limit point of $C$.
Here,
$\phi(q)$ : For every sequence $\{p_n\}$ in $C$ where $p_n \rightarrow p$ and $p_n ≠ p$, $\lim_{n\to\infty} f(p_n) = q$
$\Phi(q)$ : $\forall \epsilon >0, \exists \delta>0$ such that $\forall x\in C, 0<d(x,p)<\delta \Rightarrow d(f(x),q)$
Then, is $\phi(q) \Rightarrow \Phi(q)$ provable, $\forall q\in \mathbb{R}$?
Till now, I have proved that there exists a sequence $\{p_n\}$ in $C$ such that $p_n ≠ p$ and $p_n \rightarrow p$.
Edit; To clarify definition of limit and $q$, I edited my original post.