Let $X$ be infinite set with cocountable topology
Let Y be topological space and $f:X \to Y$ and $x_n \to x$ show $f(x_n)=f(x)$
extra: does this mean it is countinous
Defintions
Given an uncountable set $X$, the co-countable topology on $X$ is $$T_{\text{co-countable}} =\{ A \subset X : A^c \cap X \text{ is countable }\} \cup \{ \emptyset \}.$$
Let $(X,T)$ be a topological space. If $(x_n)_{n=1}^\infty$ is a sequence in $X$ we say it converges to $x_0 \in X$, $x_n \to x_0$,
if $\forall $ open set $U \subset X$ s.t $x_0 \in U$, $\exists$ $n_0 \in \mathbb N$ s.t $x_n \in U$ for all $n \geq n_0$.
Def of $f(x_n) =f(x)$
Let $(Y,T_2)$ be a topological space. If $(f(x_n))_{n=1}^\infty$ is a sequence in $Y$ we say it converges to $f(x) \in X$, $f(x_n) \to f(x_0)$,
if $\forall $ open set $V \subset Y$ s.t $f(x_0) \in V$, $\exists$ $n_0 \in \mathbb N$ s.t $f(x_n) \in V$ for all $n \geq n_0$.
missing of defigion of mapping in a topological spaece
I am trying to tied it toghter like its real. but dont see it