3

Problem

Show, using the integral test that $$\displaystyle\sum\limits_{n=2}^{\infty}\frac1{n(\ln(n))^p}$$ converges for $p>1 $ and diverges otherwise.

My progress

So far, I have

$$\begin{align} \int_2^\infty \frac1{n(\ln n)^p}\mathrm dn &= \lim\limits_{a\to\infty}\left.\left[ \frac{(\ln n)^{1-p}}{1-p} \right]\right|_2^a \\ &= \lim\limits_{a\to\infty}\left[ \frac{(\ln a)^{1-p}}{1-p} \right] - \frac{(\ln 2)^{1-p}}{1-p} \end{align}$$

But I don't see where to go from here.

I know from a previous conundrum that $\int_1^\infty \frac{1}{x^p}\mathrm dx$ converges and diverges for the same criteria on $p$. Is that useful here?

Thanks in advance for any help!

Mark Viola
  • 179,405
Alec
  • 4,094

1 Answers1

1

You need to understand if the integral converges or diverges. The only interesting piece is $$ \lim_{a\to\infty} \frac{(\ln a)^{1-p}}{1-p} $$ So clearly as $a \to \infty$, you also have $\ln a \to \infty$, so what must be the necessary and sufficient conditions on $p$ for $\ln(a)^{1-p} < \infty$?

gt6989b
  • 54,422