Problem
Show, using the integral test that $$\displaystyle\sum\limits_{n=2}^{\infty}\frac1{n(\ln(n))^p}$$ converges for $p>1 $ and diverges otherwise.
My progress
So far, I have
$$\begin{align} \int_2^\infty \frac1{n(\ln n)^p}\mathrm dn &= \lim\limits_{a\to\infty}\left.\left[ \frac{(\ln n)^{1-p}}{1-p} \right]\right|_2^a \\ &= \lim\limits_{a\to\infty}\left[ \frac{(\ln a)^{1-p}}{1-p} \right] - \frac{(\ln 2)^{1-p}}{1-p} \end{align}$$
But I don't see where to go from here.
I know from a previous conundrum that $\int_1^\infty \frac{1}{x^p}\mathrm dx$ converges and diverges for the same criteria on $p$. Is that useful here?
Thanks in advance for any help!