From looking at the graph, it looks like this function converges to 1 as $x\to\infty$. But with mathematical rigours, how would I show this?
-
Sorry, fixed the typo – user3000482 Feb 13 '17 at 21:35
-
2Please, state the question in the question not just in the title. – Rob Arthan Feb 13 '17 at 21:35
4 Answers
$$\lim _{ x\rightarrow \infty }{ { x }^{ -\frac { 2 }{ x } } } =\lim _{ x\rightarrow \infty }{ { e }^{ -\frac { 2 }{ x } \ln { x } \quad \quad } } \overset { L'Hospital }{ = } \lim _{ x\rightarrow \infty }{ { e }^{ -\frac { 2 }{ x } } } =1$$

- 21,578
You can write $\frac1{x^{2/x}}$ as $e^{-2\frac{\ln x}{x}}\rightarrow 1$ as $x\rightarrow\infty$

- 1,117
- 6
- 12
$$\lim_{x\to\infty}x^{-\frac{2}{x}}=\lim_{x\to 0^+}\left(\frac{1}{x}\right)^{-2x}=\lim_{x\to 0^+}(x^x)^2=1^2=1$$ there is a topic with several proofs that $\lim_{x\to 0^+}x^x=1$
here it is: Proof of $\lim_{x \to 0^+} x^x = 1$ without using L'Hopital's rule
and another What is the value of $\lim_{x\to 0}x^x$?
We start by letting $u=1/x$ $$\lim _{ x\to \infty } x^{ -\frac 2x } = \lim_{u \to 0} \frac{1}{u^{2u}}$$ Write the denominator as $\left(u^u\right)^2$ and note that $\lim_{ u\to 0 } u^u =1$, which is well known.

- 14,793