I need to find the least squares solution using the Pseudo=oinverse, min$_\mathbf x $$_\in$$_\Bbb R$3||A$\mathbf x - \mathbf b$||$_2$, where
A= $\begin{bmatrix} 1 & 3 & 5\\ 1 & 1 & 0\\ 1 & 1 & 2\\ 1 & 3 & 3\\ \end{bmatrix}$ and $\mathbf b$= $\begin{bmatrix} 3\\ 5\\ 7\\ -3\\ \end{bmatrix}$.
And the pseudo inverse $A^\dagger$ = ($A^T$$A$)$^{-1}$$A^T$.
How do we apply $A^\dagger$ to solve the problem?