This is what we have so far

First write up the equation of the straight line through $C$ in the direction of the vector $b=\left[\begin{smallmatrix}\ \ 0\\-9\\\ \ \frac92\end{smallmatrix}\right]$ pointing from $B$ to $C$. Here it is
$$r(t)=\begin{bmatrix}\ 0\\-9\\\ \frac92\end{bmatrix}t+\begin{bmatrix}0\\0\\\frac92\end{bmatrix}.$$
Then take a vector pointing to an arbitrary point of this straight line from $A$:
$$v(t)=\begin{bmatrix}\frac92\\9t\\-\frac92t-\frac92\ \end{bmatrix}$$
Then take the scalar product of $v$ and $b$:
$$v(t)\cdot b=-t\left(81+\frac{81}4\right)-\frac{81}4.$$
If we want $v$ to be perpendicular to $b$ then we have to solve the equation $$b\cdot v(t)=0$$ for $t$. The result is $t=-\frac15.$ the vector perpendicular to $b$ is
$$v\left(-\frac15\right)=\begin{bmatrix}\ \ \ \frac92\\-\frac95\\-\frac9{10}\end{bmatrix}.$$
Then, the equation of the straight line through $A$ in the direction of this $v$ is
$$u(t)=\begin{bmatrix}\ \ \ \frac92\\-\frac95\\-\frac9{10}\end{bmatrix}t+\begin{bmatrix}\frac92\\0\\0\end{bmatrix}.$$
The same way, we can determine the straight line $w(t)$ trough $B$ in the direction of the vector from $B$ to $M$ (the mid point of $CA$). The intersection point of $u(t)$ and $w(t)$ the the two straight line will be the orthocenter of the triangle $ABC$.
Double check my calculations!