Hint: If you put your five points ($(x_1,y_1),\dots,(x_5,y_5)$ ) in $ax^2+bxy+cy^2+dx+ey+f=0$
You will get 5 equations
$$ax_1^2+bx_1y_1+cy_1^2+dx_1+ey_1+f=0$$
$$ax_2^2+bx_2y_2+cy_2^2+dx_2+ey_2+f=0$$
$$ax_3^2+bx_3y_3+cy_3^2+dx_3+ey_3+f=0$$
$$ax_4^2+bx_4y_4+cy_4^2+dx_4+ey_4+f=0$$
$$ax_5^2+bx_5y_5+cy_5^2+dx_5+ey_5+f=0$$
You have six unknown $a,b,c,d,e,f$ but you can only have five equations with given five points. Other required sixth equation can be gotten by any point (x,y) on the ellipse .
Thus you can write six equations as:
$$ax^2+bxy+cy^2+dx+ey+f=0$$
$$ax_1^2+bx_1y_1+cy_1^2+dx_1+ey_1+f=0$$
$$ax_2^2+bx_2y_2+cy_2^2+dx_2+ey_2+f=0$$
$$ax_3^2+bx_3y_3+cy_3^2+dx_3+ey_3+f=0$$
$$ax_4^2+bx_4y_4+cy_4^2+dx_4+ey_4+f=0$$
$$ax_5^2+bx_5y_5+cy_5^2+dx_5+ey_5+f=0$$
If you try to solve the six unknown equation , the equation system can only have a solution if
$$\left|\begin{array}
&x^2 & xy & y^2 & x & y & 1
\\
x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1
\\
x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1
\\
x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1
\\
x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1
\\
x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1
\end{array}\right| = 0$$
because right side of the six equations are zero.
If determinant is not zero, there is no solution of the six equations. Thus the determinant must be zero .