Question:
Show that $$\color{Blue}{e^{-\pi/2}=i^{i}}$$
My answer:
First establish that $\qquad\qquad\quad e^{-i\pi/2}=\cos(-\pi/2)+i \sin(-\pi/2)=-i$
then $\qquad\qquad\qquad\qquad \mathrm{Log}(e^{-i \pi/2})=\mathrm{Log}(-i)$
so $\qquad\qquad\qquad\qquad\quad -i \mathrm{Log}(e^{ -\pi/2})=\mathrm{Log}(-i)$
$\qquad\qquad\qquad\qquad\qquad\quad \mathrm{Log}(e^{ -\pi/2})=-i^{-1}\mathrm{Log}(-i)$
Therefore the RHS should equal to $\mathrm{Log}(i^{i})$, but how?