I have solved this problem, but I had to use a calculator, how do I solve it without using a calculator(wont be allowed to use a calculator in the examination).
Here is my attempt:
I have solved this problem, but I had to use a calculator, how do I solve it without using a calculator(wont be allowed to use a calculator in the examination).
Here is my attempt:
$$a^2+b^2+c^2=4R^2(\sin^2\frac{\pi}{7}+\sin^2\frac{2\pi}{7}+\sin^2\frac{4\pi}{7})=$$ $$=2R^2\left(3-\cos\frac{2\pi}{7}-\cos\frac{4\pi}{7}-\cos\frac{8\pi}{7}\right)=2R^2\left(3+\frac{1}{2}\right)=7R^2$$ Because $$\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{8\pi}{7}=\frac{2\sin\frac{\pi}{7}\cos\frac{2\pi}{7}+2\sin\frac{\pi}{7}\cos\frac{4\pi}{7}+2\sin\frac{\pi}{7}\cos\frac{8\pi}{7}}{2\sin\frac{\pi}{7}}=$$ $$=\frac{\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}+\sin\frac{5\pi}{7}-\sin\frac{3\pi}{7}+\sin\frac{9\pi}{7}-\sin\frac{7\pi}{7}}{2\sin\frac{\pi}{7}}=-\frac{1}{2}$$
HINT:
For $A+B+C=\pi,$ we can prove, $$\sin^2A+\sin^2B+\sin^2C=2+2\cos A\cos B\cos C$$
Now $$\cos x\cos2x\cos4x=\dfrac{\sin2x\cos2x\cos4x}{2\sin x}=\dfrac{\sin8x}{8\sin x}$$
$8x=7x+x$
Here $7x=\pi\implies\sin8x=-\sin x$