In Mathematica I tried these values close to one as arguments for the Riemann zeta function:
Zeta[1.000000000000010000000000000000000000000000000]
Zeta[1.000000000000020000000000000000000000000000000]
Zeta[1.000000000000040000000000000000000000000000000]
Zeta[1.000000000000080000000000000000000000000000000]
Zeta[1.000000000000160000000000000000000000000000000]
Zeta[1.000000000000320000000000000000000000000000000]
Zeta[1.000000000000640000000000000000000000000000000]
N[EulerGamma, 30]
Zeta[1.000000000000010000000000000000000000000000000^-1]
Zeta[1.000000000000020000000000000000000000000000000^-1]
Zeta[1.000000000000040000000000000000000000000000000^-1]
Zeta[1.000000000000080000000000000000000000000000000^-1]
Zeta[1.000000000000160000000000000000000000000000000^-1]
Zeta[1.000000000000320000000000000000000000000000000^-1]
Zeta[1.000000000000640000000000000000000000000000000^-1]
N[1 - EulerGamma, 30]
And got the output:
1.000000000000005772156649015336*10^14
5.000000000000057721566490153432*10^13
2.5000000000000577215664901535773*10^13
1.2500000000000577215664901538686*10^13
6.2500000000005772156649015445111*10^12
3.12500000000057721566490155616168*10^12
1.56250000000057721566490157946275*10^12
0.577215664901532860606512090082
-1.000000000000004227843350984679*10^14
-5.000000000000042278433509846860*10^13
-2.5000000000000422784335098470052*10^13
-1.2500000000000422784335098472965*10^13
-6.2500000000004227843350984787899*10^12
-3.12500000000042278433509849044046*10^12
-1.56250000000042278433509851374153*10^12
0.422784335098467139393487909918
So in the arguments above there are the powers of two in the decimal digits, and in the output there are the digits of the Euler gamma or Euler Mascheroni constant.
What is the explanation for these similar decimal digits?
I have looked at the series expansion of the zeta function but I did not understand why.