My edition took too many lines, so I decided to write it as an answer.
(1) $ \ \ $ The spaces $ \ (C[0,1], \lVert \underline{} - \underline{} \rVert_1) \ $ and $ \ (C[0,1], \lVert \underline{} - \underline{} \rVert_{\infty}) \ $ are metric spaces. Thus the product topology is induced by, say, the max-product metric $$d : (C[0,1] \times C[0,1]) \times (C[0,1] \times C[0,1]) \to \mathbb{R}$$ given by $ \ \ d \big( (f,g) , (h,k) \big) = \max \{ \lVert f-g \rVert_1 \, , \lVert h-k \rVert_{\infty} \} \ $, $\forall f,g,h,k \in C[0,1]$.
Let $ \ \bar{\Delta} = \mathcal{C} \ell ( \Delta) \ $ be the topological closure of $\Delta$ with respect to the product topology. It is obvious that $ \ \Delta \subset \bar{\Delta} \subset C[0,1] \times C[0,1] \ $. Let $ \ v \in \bar{\Delta} \ $. By countable choice, there exists $ \ (v_n)_{n \in \mathbb{N}^*} \in \Delta^{\mathbb{N}^*} \ $ such that $ \displaystyle \ \lim_{n \to \infty} v_n = v \ $ with respect to the product topology. So, for each $ \ n \in \mathbb{N}^*$, there exists $ \ f_n \in C[0,1] \ $ such that $ \ v_n = (f_n , f_n) \in \Delta \, $. Furthermore, there exists $ \ \varphi , \psi \in C[0,1] \ $ such that $$\lim_{n \to \infty} (f_n , f_n) = \lim_{n \to \infty} v_n = v = (\varphi , \psi) \in C[0,1] \times C[0,1] \ . $$
Therefore, for all $ \ \varepsilon > 0 \, $, there exists $ \ N \in \mathbb{N}^* \ $ such that, $\forall n \in \mathbb{N}^*$, if $ \ n>N$, then $$\max \{ \lVert f_n - \varphi \rVert_1 \, , \lVert f_n - \psi \rVert_{\infty} \} = d \big( (f_n , f_n) , (\varphi , \psi) \big) = d(v_n,v) < \varepsilon \ . $$ Thus $ \ \lim f_n = \varphi \ \ $ in $ \ (C[0,1], \lVert \cdot \rVert_1) \ $ and $ \ \lim f_n = \psi \ \ $ in $ \ (C[0,1], \lVert \cdot \rVert_{\infty}) \ $.
For each $ \ n \in \mathbb{N}^*$ we have that
\begin{eqnarray*}
\lVert \varphi - \psi \rVert_1 & \leq & \lVert \varphi - f_n \rVert_1 + \lVert f_n - \psi \rVert_1 \\
& = & \lVert \varphi - f_n \rVert_1 + \int_0^1 |f_n (x) - \psi(x)| \ dx \\
& \leq & \lVert \varphi - f_n \rVert_1 + \int_0^1 \sup_{x \in [0,1]} |(f_n - \psi)(x)| \ dx \\
& = & \lVert \varphi - f_n \rVert_1 + \lVert f_n - \psi \rVert_{\infty} \ \ \ .
\end{eqnarray*}
Let $ \ \varepsilon > 0 \, $. There exists $ \ N_1 , N_2 \in \mathbb{N}^*$ such that, for all $ \ n \in \mathbb{N}^*$, $$n>N_1 \ \Rightarrow \ \lVert \varphi - f_n \rVert_1 < \frac{\varepsilon}{2}$$ and $$n>N_2 \ \Rightarrow \ \lVert f_n - \psi \rVert_{\infty} < \frac{\varepsilon}{2} \ \ . $$ It follows that, $\forall n \in \mathbb{N}^*$, if $ \ n > N = \max \{ N_1 \, , N_2 \}$, then $$\lVert \varphi - \psi \rVert_1 \leq \lVert \varphi - f_n \rVert_1 + \lVert f_n - \psi \rVert_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ . $$ We are left with $ \ 0 \leq \lVert \varphi - \psi \rVert_1 < \varepsilon \ $, for all $ \ \varepsilon > 0 \, $. Therefore, $\lVert \varphi - \psi \rVert_1 = 0 \ \Rightarrow \ \varphi = \psi \ $. Thus $ \ (\varphi , \psi) = v \in \Delta \, $. As $v$ was arbitrarily chosen, we have that $ \ \bar{\Delta} \subset \Delta \, $. Hence $ \ \bar{\Delta} = \Delta \ $ and we conclude that $\Delta$ is closed w.r.t. the product topology.