Suppose we have a set of primes $p_1,\dots,p_t$. Prove that $\log p_1,\dots,\log p_t$ is linear independent over $\mathbb{Q}$. Now, this implies $ \sum_{j=1}^{t}x_j\log(p_j)=0 \iff x_1=\dots=x_t=0$.
I think I have to use that fact that every $q\in\mathbb{Q}$ can be written as $\prod_{\mathcal{P}}$, where $n_p$ is a unique sequence ($n_2$,$n_3$,$\dots$) with domain $\mathbb{Z}$. Here, $\mathcal{P}$ denotes the set of all integers.
Now how can I use this to prove the linear independency?