Motivated by Gautschi double inequality, $$ \frac{n^{s}}{n^{\small1}}\ge\frac{\Gamma(n+s)}{\Gamma(n+1)}\ge\frac{(n+1)^{s}}{(n+1)^{\small1}}\ge\frac{\Gamma(n+1+s)}{\Gamma(n+1+1)}\ge\,\cdots \quad\colon\,0\lt{s}\lt1\tag{1} $$ From the main definition of zeta function, $$ \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}\,\,\,\colon\,Re\{s\}\gt1 \space\Rightarrow\space \zeta(1-s)=\sum_{n=1}^{\infty}\frac{n^{s}}{n^{\small1}} \qquad\colon\,Re\{s\}\lt0\tag{2} $$ And the sum identity of gamma function, $$ \sum_{n=0}^{\infty}\frac{\Gamma(n+s)}{n!}=0 \quad\Rightarrow\quad \Gamma(s)=-\sum_{n=1}^{\infty}\frac{\Gamma(n+s)}{\Gamma(n+1)} \qquad\colon\,Re\{s\}\lt0\tag{3} $$
How to Prove, Disprove, or Justify: $$ \zeta(1-s)+\Gamma(s)=\sum_{n=1}^{\infty}\left[\,\frac{n^{s}}{n^{\small1}}-\frac{\Gamma(n+s)}{\Gamma(n+1)}\,\right] \qquad\qquad\colon\,0\lt{s}\lt1\tag{4} $$ Does it hold if extended to complex plan $\,s\in\mathbb C\,$ inside the critical strip $\small 0\lt Re\{s\}\lt1\,$ ?
“By the monotonic decreasing behavior of the inequality, the subtracting result of the two divergent series converge one step forward, covering the critical strip!”