Given in a triangle $ABC$, $A+B=135^\circ$ ,i have to find value of $\sin^2A+\sin^2B$
ATTEMPT
i write as
$\sin^2A+\sin^2(135^\circ-A)$
$\sin^2A+\sin^2(45+A)$
$1-cos^2(A)+\sin^2(45+A)$
$1 - (cos(45+2A)(cos45))$
$1- \frac{1}{\sqrt2}cos(45+2A)$
Now $0 <A< 135$\
$0 <2A< 270$
$45 <2A+45< 315$
$\cos45 <cos(2A+45)< \cos315$
$\frac{1}{\sqrt2} <cos(2A+45)< \frac{1}{\sqrt2}$
I am stuck here as to where i have gone wrong
Thanks