0

Given in a triangle $ABC$, $A+B=135^\circ$ ,i have to find value of $\sin^2A+\sin^2B$

ATTEMPT

i write as

$\sin^2A+\sin^2(135^\circ-A)$

$\sin^2A+\sin^2(45+A)$

$1-cos^2(A)+\sin^2(45+A)$

$1 - (cos(45+2A)(cos45))$

$1- \frac{1}{\sqrt2}cos(45+2A)$

Now $0 <A< 135$\

$0 <2A< 270$

$45 <2A+45< 315$

$\cos45 <cos(2A+45)< \cos315$

$\frac{1}{\sqrt2} <cos(2A+45)< \frac{1}{\sqrt2}$

I am stuck here as to where i have gone wrong

Thanks

Taylor Ted
  • 3,408

2 Answers2

2

Your $$Q=1-{1\over\sqrt{2}}\cos\left(2A+{\pi\over4}\right)$$ is correct. But in the formulation of the problem there were no further restrictions on $A$ and $B$. If $A$ and $B$ are supposed to be angles of a triangle then $0<A<{3\pi\over4}$, and $\phi:=2A+{\pi\over4}$ satisfies ${\pi\over4}<\phi<{7\pi\over4}$, hence $-1\leq\cos\phi<{1\over\sqrt{2}}$. (Look at the graph of $\cos$ in the interval ${\pi\over4}<\phi<{7\pi\over4}$.) It follows that $Q=1-{1\over\sqrt{2}}\cos\phi$ satisfies $${1\over2}<Q\leq1+{1\over\sqrt{2}}\ .$$ Your line $\cos45^\circ <\cos(2A+45^\circ)< \cos315^\circ$ is wrong.

1

So you have $\sin^2A+\sin^2(135^\circ-A)=\sin^2A+\sin^2(45+A)$ At maximum and minimum values of this expression, we have

$$\frac{\text{d}}{\text{d}A}(\sin^2A+\sin^2(45^{\circ}+A))=0$$ $$2\sin(A)\cos(A)+2\sin(A+45^{\circ})\cos(A+45^{\circ})=0$$ $$\sin(2A)+\sin(2A+90^{\circ})=0$$ $$\sin(2A)+\cos(2A)=0$$ $$\sqrt{2}\sin(2A + 45^{\circ}) =0$$ ...

meta_warrior
  • 3,288
  • 18
  • 34