8

How can you derive that $$ \sum\limits_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4} \, ?$$ I suspect some clever use of the geometric series will do, but I don't know how.

Breaking M
  • 1,050

5 Answers5

9

We can proceed with generating functions. The trick initially seems a little contrived, but it can be made rigorous, and I think that the more you see it the more it makes sense. The first implication comes from differentiation. $$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^n \implies \frac{1}{(1-x)^2}=\sum_{n=0}^{\infty}n \cdot x^{n-1}$$

So we can multiply by $x$ to get

$$\frac{x}{(1-x)^2}=\sum_{n=0}^{\infty} n \cdot x^n=\sum_{n=1}^{\infty}n \cdot x^n.$$

Substituting $x=1/3$, we obtain

$\frac{1/3}{(2/3)^2}=3/4$

Andres Mejia
  • 20,977
2

Let $$S_n= \sum_{n=1}^{\infty} \frac{n}{3^n}\tag1$$ $$\frac13S_n=\sum_{n=1}^{\infty} \frac{n}{3^{n+1}}=\sum_{n=1}^{\infty} \frac{n+1}{3^{n+1}}-\sum_{n=1}^{\infty}\frac1{3^{n+1}}\tag2$$

$(1)-(2)$, $$\begin{align}\frac23S_n&=\sum_{n=1}^{\infty} \frac{n}{3^n}-\sum_{n=1}^{\infty} \frac{n+1}{3^{n+1}}+\sum_{n=1}^{\infty}\frac1{3^{n+1}}\\ &=\sum_{n=1}^{\infty} \frac{n}{3^n}-\sum_{n=2}^{\infty} \frac{n}{3^{n}}+\sum_{n=1}^{\infty}\frac1{3^{n+1}}\\ &=\frac13+\sum_{n=1}^{\infty}\frac1{3^{n+1}}\\ &=\sum_{n=1}^{\infty}\frac1{3^{n}}=\frac12\end{align}$$

Thus, $$S_n=\frac34$$

GoodDeeds
  • 11,185
  • 3
  • 22
  • 42
  • No $S_n$ actually depends on $n$. 2. The justification of the step $(1)-(2)$ requires to know beforehand the series converges.
  • – Did Aug 11 '18 at 16:55