4

Given $n = \lvert G \rvert$ then the factorization of $n$ can sometimes give information about the group $G$. For example if $n$ is prime we know that the group is the cyclic group $C_n$. If $n$ is the power of a prime then we know that $G$ is nilpotent. Are there cases like these that assert that $G$ has certain properties knowing $n$? For example all groups of size $100$ are solvable, for which $n$ can one say the same?

1 Answers1

5

We say that $n$ is a nilpotent number if when we factor $n = p_1^{a_1} \cdots p_r^{a_r}$ we have $p_i^k \not \equiv 1 \bmod{p_j}$ for all $1 \leq k \leq a_i$.

Then

  • Every group of order $n$ is nilpotent iff $n$ is a nilpotent number.
  • Every group of order $n$ is abelian iff $n$ is a cubefree nilpotent number.
  • Every group of order $n$ is cyclic iff $n$ is a squarefree nilpotent number.

(adapted from an answer by Pete Clark)

For solvable numbers, see the last theorem in the paper Nilpotent and solvable numbers by Pakianathan and Shankar:

enter image description here

(also J. Pakianathan and K. Shankar, Nilpotent numbers, Amer. Math. Monthly, 107, August– September 2000, 631–634)

lhf
  • 216,483