How to prove that the following matrix has an inverse with integer entries? Also find out the inverse.
\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots &\ \frac{1}{n-1} & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots &\ \frac{1}{n} & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots &\ \frac{1}{n+1} & \frac{1}{n+2} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots &\ \frac{1}{n+1} & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \cdots &\ \frac{1}{2n-2} & \frac{1}{2n-1} \\ \end{bmatrix}