I'm building off of this question
if-a-and-b-are-nonempty-sets-prove ...
but instead $A$ and $B$ are not equal:
Prove that if $A$ and $B$ are nonempty sets where $A \neq B$, then $A \times B \neq B \times A$
So far I have
where $x \in A$ and $y \in B$ so $(x, y) \in A \times B$