Fix $\varepsilon>0$, small enough (concretely $\varepsilon<f'(a)/2$). Since $f$ is differentiable at $a$, there exists $\delta>0$ such that $$ \left|\frac{f(y)-f(a)}{y-a}-f'(a)\right|<\frac{\varepsilon\,f'(a)}{2}$$ if $|y-a|<\delta$. Now, writing $a_1=f^{-1}(b+h)$, with $h$ small enough so that $|a_1-a|<\delta$ (this comes from the continuity of $f^{-1}$ at $b$, which follows from the continuity of $f$ at $a$),
\begin{align}
\left|\frac{f^{-1}(b+h)-f^{-1}(b)}{h}-\frac1{f'(a)}\right|&=\left|\frac{a_1-a}{f(a_1)-f(a)}-\frac1{f'(a)}\right|\\ \ \\
&=\left|\left(f'(a)-\frac{f(a_1)-f(a)}{a_1-a}\right)\frac1{f'(a)}\,\frac{1}{\frac{f(a_1)-f(a)}{a_1-a}}\right|\\ \ \\
&=\left|\left(f'(a)-\frac{f(a_1)-f(a)}{a_1-a}\right)\frac1{f'(a)}\,\frac{1}{f'(a)-\varepsilon}\right|\\ \ \\
&\leq\frac{\varepsilon\,f'(a)}{2(f'(a)-\varepsilon)^2}
\leq\frac{\varepsilon\,f'(a)}{2f'(a)/2}=\varepsilon.
\end{align}