Yes, the sum is $\pi-2$. The method shown by @Jack Aurizio shows that.
BTW, your integral has a mistake in it; the integral you present has value $\frac{176}{9}-6\pi$.
Start from the definition of the beta function
$$
(n+\frac12)B^2(n,\frac32) = (n+\frac12) \frac{\Gamma^2(n)\Gamma^2(\frac32)}{\Gamma^2(n+\frac32)}= (n+\frac12) \frac{(n-1)!)^2\frac{\pi}{4}}{(n+\frac12)^2\Gamma^2(n+\frac12)}= \frac{\pi(n-1)!)^2}{4(n+\frac12)\Gamma^2(n+\frac12)}
$$
Now apply the formula $$\Gamma(n+\frac12) =
\frac{(2n)!}{4^n n!}\sqrt{\pi}$$ to obtain
$$
\frac{\pi(n-1)!)^2}{4(n+\frac12)\Gamma^2(n+\frac12)}
= \frac{1}{2}\frac{2^{4n}(n!)^2(n-1)!)^2}{(2n+1)(2n)!(2n)!}
$$
Next use $\frac{(2n)!}{2^n}= n!(2n-1)!!$ to get $$
\frac{\pi(n-1)!)^2}{4(n+\frac12)\Gamma^2(n+\frac12)}
= \frac{1}{2}\frac{2^{2n}(n!)^2(n-1)!)^2}{(2n+1)(n!)^2((2n-1)!!)^2}
= \frac{1}{2}\frac{2^{2n}(n-1)!)^2}{(2n+1)((2n-1)!!)^2}
$$
This is a fairly simple seires: The first term is $\frac23$ and the term ratio for $n\geq 1$ is
$$
\frac{a_{n+1}}{a_n} = \frac{4n^2}{(2n+3)(2n+1)}
$$
So now we know that
$$
\pi = 2+\frac23 \sum_{n=1}^\infty \prod_{k=1}^{n-1} \frac{4k^2}{(2k+3)(2k+1)}
$$
This is not among the relations I can find in Mathworld, Abramowitz and Stegun, Rektorys, or various lists of series for $\pi$ I can find on the web.
And now we have this (round-about) way of proving it.