Frullani's Integral
$$\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}dx=\ln\left(\frac ba\right)\quad,\quad a,b>0$$
Another Way
You can use Laplace transform. Let $\mathcal{L}[f(t)]=F(s)$, We have
$$\int_{0}^{\infty}F(s)ds=\int_{0}^{\infty}\int_{0}^{\infty}e^{-st}f(t) \mathrm{dt}\mathrm{ds}=\int_{0}^{\infty}\left(\int_{0}^{\infty}e^{-st}\mathrm{ds}\right)f(t)dt=\int_{0}^{\infty}\frac{f(t)}{t}\mathrm{dt}$$
As a result
$$\int_{0}^{\infty}F(s)ds=\int_{0}^{\infty}\frac{f(t)}{t}\mathrm{dt}$$
Now apply the result for $f(t)=e^{-at}$ , and $f(t)=e^{-bt}$
$$\int_{0}^{\infty}\frac{e^{-ax}-e^{-bx}}{x}dx=\int_{0}^{\infty}\left(\frac{1}{s+a}-\frac{1}{s+b}\right)ds=\ln\left(\frac{s+a}{s+b}\right)\Big{|}_{0}^{\infty}=-\ln\left(\frac{a}{b}\right)=\ln\left(\frac{b}{a}\right)$$