4

How to do this please: $$\int_{0}^{\pi}(\sin t)^{\alpha}\cos(kt) \;dt$$

Here, $\alpha > -1, k \in \mathbb{Z}$.

Mathematica give this: $$\int_{0}^{\pi}(\sin t)^{\alpha}\cos(kt)dt=\frac{\pi \cdot 2^{-\alpha} \cdot \Gamma (\alpha+1) \cos \left(\frac{\pi k}{2}\right)}{\Gamma \left(\frac{1}{2}(\alpha-k+2)\right) \Gamma \left(\frac{1}{2} (\alpha+k+2)\right)}$$

It seams like reciprocal of beta function, but I can not do it.

If $k \to 2k$, then $\cos(\frac{\pi k}{2}) \to \cos(\pi k) = (-1)^k$.

Harry Peter
  • 7,819
xunitc
  • 596
  • 3
  • 12

1 Answers1

3

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

With $\ds{a > - 1}$ and $\ds{k \in \mathbb{Z}}$:

Note that \begin{align} \mrm{I}_{k}\pars{\alpha} & \equiv \int_{0}^{\pi}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{kt}\,\dd t \\[5mm] & = \int_{0}^{\pi/2}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{\verts{k}t}\,\dd t + \int_{\pi/2}^{\pi}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{\verts{k}t}\,\dd t \\[5mm] = &\ \int_{0}^{\pi/2}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{\verts{k}t}\,\dd t + \int_{-\pi/2}^{0}\bracks{-\sin\pars{t}}^{\,\alpha}\pars{-1}^{\verts{k}}\cos\pars{\verts{k}t}\,\dd t \\[5mm] = &\ \bracks{1 + \pars{-1}^{\verts{k}}} \int_{0}^{\pi/2}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{\verts{k}t}\,\dd t \implies \bbx{\ds{\mrm{I}_{k}\pars{\alpha} = 0\,,\quad k\ \mbox{odd}}} \end{align}


Then, for $\ds{\verts{k} = 2m}$ even $\ds{\pars{m \in \mathbb{Z}_{\geq 0}}}$: \begin{align} \left.\mrm{I}_{k}\pars{\alpha}\right\vert_{\ k\ even} & = 2\int_{0}^{\pi/2}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{2mt}\,\dd t = 2\,\Re\int_{0}^{\pi/2}\bracks{\sin\pars{t}}^{\,\alpha}\exp\pars{2mt\,\ic}\,\dd t \\[5mm] & = \left.2\,\Re\int_{0}^{\pi/2}\pars{z - 1/z \over 2\ic}^{\alpha}\,z^{2m} \,{\dd z \over \ic z}\, \right\vert_{\ z\ =\ \exp\pars{\ic t}} \\[5mm] & = \left.2^{1 - \alpha}\,\Im\int_{0}^{\pi/2} \pars{{1 - z^{2} \over z}\,\ic}^{\alpha}z^{2m - 1}\,\dd z \,\right\vert_{\ z\ =\ \exp\pars{\ic t}}\label{1}\tag{1} \end{align} I'll 'close' the integral along $\ds{y \in \pars{0,1}}$ and $\ds{x \in \pars{0,1}}$ and along an indent around $\ds{z = 0}$. The $\ds{\xi^{\alpha}}$ $\mbox{branch-cut}$ is given by $$ \xi^{\alpha} = \verts{\xi}^{\alpha}\exp\pars{a\,\mrm{arg}\pars{\xi}\ic}\,; \qquad -\pi < \mrm{arg}\pars{\xi} < \pi\,,\quad \xi \not= 0 $$
\eqref{1} becomes \begin{align} \left.\mrm{I}_{k}\pars{\alpha}\right\vert_{\ k\ even} & = -2^{1 - \alpha}\,\Im\int_{1}^{\epsilon}\pars{1 + y^{2} \over y}^{\alpha}\, \pars{-1}^{m + 1}\,\ic\,y^{2m - 1}\ic\,\dd y \\[5mm] & - 2^{1 - \alpha}\,\Im\int_{\pi/2}^{0} \bracks{{1 \over \epsilon\exp\pars{\ic t}}\,\ic}^{\alpha}\, \epsilon^{2m - 1}\exp\pars{\ic\bracks{2m - 1}t}\, \epsilon\exp\pars{\ic t}\ic\,\dd t \\[5mm] & - 2^{1 - \alpha}\,\Im\int_{\epsilon}^{1}\pars{1 - x^{2} \over x}^{\alpha} \exp\pars{\ic\,{\pi \over 2}\,\alpha}\,x^{2m - 1}\,\dd x \\[1cm] & = 2^{1 - \alpha}\epsilon^{2m - \alpha}\,\,\,\, \overbrace{\Re\int_{0}^{\pi/2} \exp\pars{\ic\bracks{{\pi \over 2} - t}\alpha}\exp\pars{2mt\,\ic}\,\dd t} ^{\ds{-\,{\sin\pars{\pi\alpha/2} \over 2m - \alpha}}} \\[5mm] & - 2^{1 - \alpha}\sin\pars{{\pi \over 2}\,\alpha} \int_{x\ =\ \epsilon}^{x\ =\ 1}\pars{1 - x^{2}}^{\alpha} \,\dd\pars{x^{2m - \alpha} \over 2m - \alpha} \end{align} Integrating by parts the last integral and taking the limit $\ds{\epsilon \to 0^{+}}$: \begin{align} \left.\mrm{I}_{k}\pars{\alpha}\right\vert_{\ k\ even} & = {2^{1 - \alpha}\sin\pars{\pi\alpha/2} \over 2m - \alpha} \int_{0}^{1}x^{2m - \alpha}\,\alpha\pars{1 - x^{2}}^{\alpha - 1}\pars{-2x} \,\dd x \\[5mm] & \stackrel{x^{2}\ \mapsto\ x}{=}\,\,\, {2^{1 - \alpha}\alpha\sin\pars{\pi\alpha/2} \over \alpha - 2m} \int_{0}^{1}x^{m - \alpha/2}\pars{1 - x}^{\alpha - 1}\,\dd x \\[5mm] & = {2^{1 - \alpha}\alpha\sin\pars{\pi\alpha/2} \over \alpha - 2m}\, {\Gamma\pars{m - \alpha/2 + 1}\Gamma\pars{\alpha} \over \Gamma\pars{m + \alpha/2 + 1}} \\[5mm] & = {2^{1 - \alpha}\sin\pars{\pi\alpha/2} \over \alpha - 2m}\, {\bracks{\pars{m - \alpha/2}\Gamma\pars{m - \alpha/2}} \bracks{\alpha\Gamma\pars{\alpha}} \over \Gamma\pars{m + \alpha/2 + 1}} \\[5mm] & = -2^{-\alpha}\sin\pars{\pi\alpha/2} {\Gamma\pars{m - \alpha/2} \Gamma\pars{\alpha + 1} \over \Gamma\pars{m + \alpha/2 + 1}} \\[5mm] & = -2^{-\alpha}\sin\pars{\pi\alpha/2}\, {\pi \over \Gamma\pars{1 - m + \alpha/2}\sin\pars{\pi m - \pi\alpha/2}} {\Gamma\pars{\alpha + 1} \over \Gamma\pars{m + \alpha/2 + 1}} \\[5mm] & = 2^{-\alpha}\pi\,{\Gamma\pars{\alpha + 1} \over \Gamma\pars{1 - m + \alpha/2}\Gamma\pars{m + \alpha/2 + 1}}\,\cos\pars{\pi m} \end{align} Finally: $$\bbx{\ds{% \int_{0}^{\pi}\bracks{\sin\pars{t}}^{\,\alpha}\cos\pars{kt}\,\dd t = {\pi\,2^{-\alpha}\,\Gamma\pars{\alpha + 1}\cos\pars{\pi k/2} \over \Gamma\pars{\bracks{2 - k + \alpha}/2}\Gamma\pars{\bracks{k + \alpha + 2}/2}}}} $$
Felix Marin
  • 89,464
  • Thank you. by the link http://math.stackexchange.com/questions/759513/integral-int-0-pi-2-theta2-log-42-cos-theta-d-theta-frac33-pi7/936418#936418 I know that now. Thank you too. – xunitc Feb 27 '17 at 01:41
  • @xunitc It's nice to know it was useful. – Felix Marin Feb 27 '17 at 16:53