Find the determinant of order $100$:
$$D=\begin{vmatrix} 5 &5 &5 &\ldots &5 &5 &-1\\ 5 &5 &5 &\ldots &5 &-1 &5\\ 5 &5 &5 &\ldots &-1 &5 &5\\ \vdots &\vdots &\vdots &\ddots &\vdots &\vdots &\vdots\\ 5 &5 &-1 &\ldots &5 &5 &5\\ 5 &-1 &5 &\ldots &5 &5 &5\\ -1 &5 &5 &\ldots &5 &5 &5 \end{vmatrix}$$
I think I should be using recurrence relations here but I'm not entirely sure how that method works. I tried this:
Multiplying the first row by $(-1)$ and adding it to all rows: $$D=\begin{vmatrix} 5 &5 &5 &\ldots &5 &5 &-1\\ 5 &5 &5 &\ldots &5 &-1 &5\\ 5 &5 &5 &\ldots &-1 &5 &5\\ \vdots &\vdots &\vdots &\ddots &\vdots &\vdots &\vdots\\ 5 &5 &-1 &\ldots &5 &5 &5\\ 5 &-1 &5 &\ldots &5 &5 &5\\ -1 &5 &5 &\ldots &5 &5 &5 \end{vmatrix}=\begin{vmatrix} 5 &5 &5 &\ldots &5 &5 &-1\\ 0 &0 &0 &\ldots &0 &-6 &6\\ 0 &0 &0 &\ldots &-6 &0 &6\\ \vdots &\vdots &\vdots &\ddots &\vdots &\vdots &\vdots\\ 0 &0 &-6 &\ldots &0 &0 &6\\\ 0 &-6 &0 &\ldots &0 &0 &6\\ -6 &0 &0 &\ldots &0 &0 &6 \end{vmatrix}$$
Applying Laplace's method to the first column
$$D=5\begin{vmatrix} 0 &0 &\ldots &0 &-6 &6\\ 0 &0 &\ldots &-6 &0 &6\\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots\\ 0 &-6 &\ldots &0 &0 &6\\ -6 &0 &\ldots &0 &0 &6 \end{vmatrix}+6\begin{vmatrix} 5 &5 &\ldots &5 &5 &-1\\ 0 &0 &\ldots &0 &-6 &6\\ 0 &0 &\ldots &-6 &0 &6\\ \vdots &\vdots &\ddots &\vdots &\vdots &\vdots\\ 0 &-6 &\ldots &0 &0 &6\\ -6 &0 &\ldots &0 &0 &6 \end{vmatrix}$$
I can see that this one is $D$ but of order $99$...Is this leading anywhere? How would you solve this?