I'm not so sure of indefinite integration, but if we add bounds, it comes out beautifully, as shown here.
Take the derivative with respect to $m$ to get
$$\begin{align}-I'(-m)&=\int_0^\pi\frac{2m-2\cos(x)}{1-2m\cos(x)+m^2}\ dx\\&=\frac1m\int_0^\pi1-\frac{1-m^2}{1-2m\cos(x)+m^2}\ dx\\&=\frac\pi m-\frac2m\tan^{-1}\left(\frac{1+m}{1-m}\tan(x/2)\right)\bigg|_{x=0}^{x=\pi}\\&=\begin{cases}0&|m|<1\\\frac{2\pi}m&|m|>1\end{cases}\end{align}$$
It thus becomes clear that
$$I(-m)=\begin{cases}C_1&|m|<1\\2\pi\ln|m|+C_2&|m|>1\end{cases}$$
By substituting in a few values, one may deduce that $C_1=C_2=0$, thus
$$\int_0^\pi\ln(1+2m\cos(x)+m^2)\ dx=\begin{cases}0&|m|<1\\2\pi\ln|m|&|m|>1\end{cases}$$