Express $\sin e^i$ in $a + ib$ form.
$$\sin e^i = \frac{e^{ie^i}-e^{-ie^i}}{2i}$$
I feel like I can express $ie^i$ in a simpler way, but I'm not sure how.
Thanks for your attention.
Express $\sin e^i$ in $a + ib$ form.
$$\sin e^i = \frac{e^{ie^i}-e^{-ie^i}}{2i}$$
I feel like I can express $ie^i$ in a simpler way, but I'm not sure how.
Thanks for your attention.
$$\displaylines{ e^i=\cos1+i\sin1\cr ie^i=-\sin1+i\cos1\cr e^{ie^i}=e^{-\sin1}(\cos(\cos1)+i\sin(\cos1))\cr e^{-ie^i}=e^{\sin1}(\cos(\cos1)-i\sin(\cos1))\cr e^{ie^i}-e^{-ie^i}=-2\sinh(\sin1)\cos(\cos1)+2i\cosh(\sin1)\sin(\cos1)\cr \sin(e^i)=\cosh(\sin1)\sin(\cos1)+i\sinh(\sin1)\cos(\cos1)\cr }$$
Use the most beautiful equation in mathematics:
$e^{i \pi} = -1$
So $e^i = (-1)^{1/\pi} = (i^2)^{1/\pi} = i^{2/\pi}$.
Multiply by $i$ to get:
$i e^i = i^{(\pi + 2)/\pi} = -0.841471 + 0.540302 i$.
as one "simple" solution (among others). "Simple"? You be the judge.