Possible Duplicate:
If $\int_0^\infty fdx$ exists, does $\lim_{x\to\infty}f(x)=0$?
Let $ \int_{-\infty}^\infty |f| < \infty$. Then $$ \lim_{x \to \infty} f(x) =0 \;?$$ If this is true, then how can I prove this?
Possible Duplicate:
If $\int_0^\infty fdx$ exists, does $\lim_{x\to\infty}f(x)=0$?
Let $ \int_{-\infty}^\infty |f| < \infty$. Then $$ \lim_{x \to \infty} f(x) =0 \;?$$ If this is true, then how can I prove this?
Let $$f(x)=\begin{cases} n,&\text{if }n\le x\le n+\frac1{n^3}\text{ for some }n\in\Bbb Z^+\\ 0,&\text{otherwise}\;; \end{cases}$$
then $$\int_{-\infty}^\infty f(x)\,dx=\sum_{n\ge 1}\frac{n}{n^3}=\frac{\pi^2}6\;,$$
but $\limsup\limits_{x\to\infty}f(x)=\infty$. You can replace the steps with ‘tents’ to make $f$ continuous without qualitatively affecting the example; you can even round off the corners to make it arbitrarily differentiable.