Informations: $f:X \longrightarrow X$ and $A \subseteq X$.
How can i prove this statement: $f(f^{-1}(A)) \subseteq A$
This is my thoughts until now:
$f^1(A)=\{x\in X |f(x)\in A\} \subseteq X$.
$f(A)=\{f(x)|x\in A\}$
$f(f^1(A))=\{y\in A:\exists \in f^1(A):y=f(x)\} \in A$