Let the pair (X,Y) be uniformly distributed on the unit disc, so that
$f_{X,Y}(x,y)=\begin{cases}\frac{1}{\pi}&\text{if }x^2+y^2\leq1,\\0&\text{otherwise}.\end{cases}$
Find $\mathbb E\sqrt{X^2+Y^2}$ and $\mathbb E(X^2+Y^2)$.
We are not familiar with coordinate transformations, and my teacher told us to simply look carefully at the volume we're trying to calculate.
We know that
$$\mathbb E(g(X,Y))=\int_{-\infty}^\infty\int_{-\infty}^\infty g(x,y)f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy$$.
Applying this to $g(X,Y)=\sqrt{X^2+Y^2}$ we get
$\begin{aligned}\mathbb E(\sqrt{X^2+Y^2})=&\int_{-\infty}^\infty\int_{-\infty}^\infty \sqrt{x^2+y^2}f_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx\\ =&\int_{-1}^1\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\sqrt{x^2+y^2}\pi^{-1}\,\mathrm dy\,\mathrm dx. \end{aligned}$
Now here I would need to apply some useful transformation. Could someone help me out from here?