First of all, let us prove that
$$A=\frac 14\left(\binom{200}{102}-\binom{100}{51}\right)$$
Proof :
Let us define $C,D,E$ as follows :
$$C:= \binom{100}{99}\binom{100}{3}+\binom{100}{95}\binom{100}{7}+\cdots+\binom{100}{3}\binom{100}{99} $$
$$D:= \binom{100}{98} \binom{100}{4}+\binom{100}{94}\binom{100}{8}+\cdots +\binom{100}{2} \binom{100}{100} $$
$$E:= \binom{100}{97}\binom{100}{5}+\binom{100}{93} \binom{100}{9}+\cdots+\binom{100}{5} \binom{100}{97} $$
We get
$$A+C+D+E=\sum_{k=0}^{98}\binom{100}{100-k}\binom{100}{2+k}=[x^{102}](1+x)^{200}=\binom{200}{102}\tag1$$
Next, considering $(1+ix)^{100}$ and $(1-ix)^{100}$, we get
$$A-C+D-E=-[x^{102}](1+ix)^{100}(1-ix)^{100}=-[x^{102}](1+x^2)^{100}=-\binom{100}{51}\tag2$$
Also, considering $\left(1+\frac{1+i}{\sqrt 2}x\right)^{100}$ and $\left(1+\frac{1-i}{\sqrt 2}x\right)^{100}$, we get
$$C-E+i(A-D)=[x^{102}]\left(1+\frac{1+i}{\sqrt 2}x\right)^{100}\left(1+\frac{1-i}{\sqrt 2}x\right)^{100}=[x^{102}](1+\sqrt 2x+x^2)^{100}$$
from which
$$A-D=0\tag3$$
follows.
It follows from $(1)(2)(3)$ that
$$A=\sum_{k=0}^{24}\binom{100}{4k}\binom{100}{4k+2}=\frac 14\left(\binom{200}{102}-\binom{100}{51}\right)$$
Next, let us prove that
$$B=2^{197}-2^{98}$$
Proof :
Let us consider the following sums :
$$\binom n0+\binom n1+\binom n2+\binom n3+\binom n4+\cdots +\binom nn=2^n$$
$$\binom n0-\binom n1+\binom n2-\binom n3+\binom n4-\cdots +(-1)^n\binom nn=0$$
$$-\left(\binom n0+\binom n1i-\binom n2-\binom n3i+\binom n4+\cdots\right)=-(1+i)^n$$
$$-\left(\binom n0-\binom n1i-\binom n2+\binom n3i+\binom n4-\cdots\right)=-(1-i)^n$$
$$-i\left(\binom n0+\binom n1\frac{1+i}{\sqrt 2}+\binom n2i+\frac{-1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=-i\left(1+\frac{1+i}{\sqrt 2}\right)^n$$
$$-i\left(\binom n0-\binom n1\frac{1+i}{\sqrt 2}+\binom n2i-\frac{-1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=-i\left(1-\frac{1+i}{\sqrt 2}\right)^n$$
$$i\left(\binom n0+\frac{1-i}{\sqrt 2}\binom n1-\binom n2i-\frac{1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=i\left(1+\frac{1-i}{\sqrt 2}\right)^n$$
$$i\left(\binom n0-\frac{1-i}{\sqrt 2}\binom n1-\binom n2i+\frac{1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=i\left(1-\frac{1-i}{\sqrt 2}\right)^n$$
Adding these gives
$$8\left(\binom n2+\binom n{10}+\binom n{18}+\cdots \right)$$
$$=2^n-(1+i)^n-(1-i)^n-i\left(1+\frac{1+i}{\sqrt 2}\right)^n-i\left(1-\frac{1+i}{\sqrt 2}\right)^n$$
$$+i\left(1+\frac{1-i}{\sqrt 2}\right)^n+i\left(1-\frac{1-i}{\sqrt 2}\right)^n$$
$$=2^n-2\cdot 2^{n/2}\cos(n\pi/4)-i(2+\sqrt 2)^{n/2}(\cos(n\pi/8)+i\sin(n\pi/8))$$
$$-i(2-\sqrt 2)^{n/2}(\cos(3n\pi/8)-i\sin(3n\pi/8))$$
$$+i(2+\sqrt 2)^{n/2}(\cos(n\pi/8)-i\sin(n\pi/8))$$
$$+i(2-\sqrt 2)^{n/2}(\cos(3n\pi/8)+i\sin(3n\pi/8))$$
$$=2^n-2\cdot 2^{n/2}\cos(n\pi/4)+2(2+\sqrt 2)^{n/2}(\sin(n\pi/8))$$
$$-2(2-\sqrt 2)^{n/2}(\sin(3n\pi/8))$$
from which we have
$$\binom n2+\binom n{10}+\binom n{18}+\cdots $$
$$=2^{n-3}-2^{\frac{n-4}{2}}\cos\left(\frac{n\pi}{4}\right)+\frac 14(2+\sqrt 2)^{n/2}\sin\left(\frac{n\pi}{8}\right)-\frac 14(2-\sqrt 2)^{n/2}\sin\left(\frac{3n\pi}{8}\right)$$
For $n=200$, we have $\cos\left(\frac{n\pi}{4}\right)=1$ and $\sin\left(\frac{n\pi}{8}\right)=\sin\left(\frac{3n\pi}{8}\right)=0$, so
$$B=\sum_{k=1}^{25}\binom{200}{8k-6}=2^{197}-2^{98}$$
Conclusion :
$$\frac AB=\color{red}{\frac{\binom{200}{102}-\binom{100}{51}}{2^{199}-2^{100}}}$$