-4

I am computing the unilateral z transform of $\nu(n)$. Please help me with the following questions

How can I find the expression for

$\sum_{n=0}^\infty nx^{-n}=x^{-1} + 2x^{-2} + 3x^{-3}+\ldots$

Please show the steps and explain

Please tell the values of x for which the result will hold (Summation will converge)

jimjim
  • 9,675
Soumee
  • 1,087

2 Answers2

3

Notice the following:

$$\frac1{1-z}=\sum_{n=0}^\infty z^n$$

take the derivative of both sides:

$$\frac d{dz}\frac1{1-z}=\sum_{n=0}^\infty nz^{n-1}$$

Multiply both sides by $z$.

$$z\cdot\frac d{dz}\frac1{1-z}=\sum_{n=0}^\infty nz^n$$

Now calculate the derivative and let $z=x^{-1}$ to get your series.

0

Start from $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. Then $\frac{1}{1-x} + \frac{x}{1-x} = 1 + 2x+2x^2+2x^3+...$, $\frac{1}{1-x} + \frac{x}{1-x} + \frac{x^2}{1-x} = 1 + 2x + 3x^2 + 3x^3+3x^4+...$, and in general, $\frac{1}{1-x} \sum_{n=0}^{\infty} x^n = \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$. Multiply this by $x$ and substitute $x^{-1}$ for $x$ into both sides to get the result you're looking for.

Vik78
  • 3,877