I understand that $C([0,1])$ of continuous complex-valued functions on $[0,1]$ is complete wrt sup norm. But why the space $C((0,1))$ of continuous complex-valued functions on $(0,1)$ is not complete?
-
1Why do you think it isn't? – Mariano Suárez-Álvarez Jan 28 '17 at 15:20
-
1First check whether the sup norm is even defined on $C(0,1).$ – tessellation Jan 28 '17 at 15:22
-
@MarianoSuárez-Álvarez I look at the question here http://math.stackexchange.com/questions/724689/is-the-space-of-continuous-functions-a-cauchy-complete and on the comment of the answer, it says "(0,1) is no longer compact and the result doesn't hold". – Kenneth.K Jan 28 '17 at 15:40
-
But the problem is not that the space is not complete with respect to that norm but that that norm cannot even be defined! – Mariano Suárez-Álvarez Jan 28 '17 at 16:05
1 Answers
Notice that not all continuous functions are bounded, so the supremum norm cannot be defined on $C(0,1)$.
If we restrict ourselves to the set of bounded continuous functions on $f:(0,1)\rightarrow M$, where $M$ is a complete metric space then it is true.
Notice that the space of bounded functions with some fixed domain is complete for any domain (see here, the proof only uses that $\mathbb R$ is complete, so it works for $M$ also).
Suppose that $f_1,f_2,\dots$ are continuous functions on $(0,1)$ that converge uniformly to a bounded function $f$.
pick an $x_0\in (0,1)$ and $\epsilon>0$. By hypothesis there is an $N$ such that $|f_N(x)-f(x)|<\epsilon/3$ for all $x\in(0,1)$. There is also a neighbourhood $U$ around $x$ such that $|f_N(x_0)-f_n(x)|<\epsilon/3$ for all $x\in U$.
It follows by the triangle inequality that $|f(x_0)-f(x)|<|f(x_0)-f_N(x_0)|+|f_N(x_0)-f_N(x)|+|f_N(x)-f(x)|<\epsilon$ for all $x\in U$, so $f$ is continuous at $x$, and hence in all $(0,1)$.
So the space of bounded continuous function with domain $(0,1)$ is complete (which is cool since it is the biggest set to which we can assign the supremum norm)
-
Hi just a quick question. Why it is the biggest set to which we can assign the sup norm? – Kenneth.K Jan 28 '17 at 17:43
-