The standard definition of a Subgroup $H$ of a Group $(G,+)$ is as follows:
$H$ is Subgroup of $(G,+)$ if $\begin{cases} G \supseteq H\neq \emptyset \\ \forall x,y \in H:(x+y) \in H \\ \forall x \in H:(-x) \in H \end{cases}$
Why $H\neq \emptyset$?