I was messing around with some matrices and found the following result.
Let $A_n$ be the $(2n) \times (2n)$ matrix consisting of elements $$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \leq (n,n) \text{ and } i \neq j \\ 1 & \text{if } (i,j) > (n,n) \text{ and } i \neq j \\ 0 & \text{otherwise}. \end{cases} $$ Then, the determinant of $A_n$ is given by $$\text{det}(A_n) = (n-1)^2.$$
Example: $$A_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ \end{pmatrix},$$ with det$(A_2)$ and det$(A_3)$ being $1$ and $4$ respectively. I was wondering if anybody could prove this statement for me.