- (Collatz Conjecture) $\operatorname{Coll}_{3n+1}=\operatorname{Coll}$ (the original Collatz function) give only one cycle.
- For $\ell=3^ar, \ a\geq 1$ with $3 \nmid r , \ \operatorname{Coll}_{3n+\ell}$ behave like $\operatorname{Coll}_{3n+r}$ (meaning that iteration of $\ \operatorname{Coll}_{3n+\ell}$ beginning at $x$ terminates, for each $x \in \mathbb{N}$ iff iteration of $\operatorname{Coll}_{3n+r}$ beginning at $x$ terminates, for each $x \in \mathbb{N}$). In particular if $\ell=3^a$ then $\ \operatorname{Coll}_{3n+\ell}$ behave like $\operatorname{Coll}$.
- For $\ell$ such that $3 \nmid \ell , \ \operatorname{Coll}_{3n+\ell}$ give at least two cycles, the one being iteration of $\operatorname{Coll}_{3n+\ell}$ beginning at $1$, and the other iteration of $\operatorname{Coll}_{3n+\ell}$ beginning at $\ell$. Further for $k \in \mathbb{N}$ such that $\ell | k$ iteration of $\operatorname{Coll}_{3n+\ell}$ at $k$ behave like $\operatorname{Coll}$ (and eventually reach $\ell$, assuming the truth of Collatz conjecture).
For (2):
if $x=2^bk$ with $2 \nmid k$ then iteration of $\operatorname{Coll}_{3n+\ell}$ at $x$ goes:
$$2^bk\rightarrow 2^{b-1}k\rightarrow \ldots\rightarrow k \rightarrow 3k+l=3k+3^ar=3(k+3^{a-1}r)\rightarrow \ldots $$
so whatever $x$ is, iteration of $\operatorname{Coll}_{3n+\ell}$ beginning at $x$ will give at some point $3y$, for some $y \in \mathbb{N}$.
If $2 \nmid y$ then $\operatorname{Coll}_{3n+\ell}(3y)=3\cdot 3y+\ell= 3( 3y+\frac{\ell}{3}) = 3\operatorname{Coll}_{3n+\frac{\ell}{3}}(y)$.
If $2|y$ then $\operatorname{Coll}_{3n+\ell}(3y)=3 \frac{y}{2}=3\operatorname{Coll}_{3n+\frac{\ell}{3}}(y)$.
And so on.
So $\ \operatorname{Coll}_{3n+\ell}$ behave like $\operatorname{Coll}_{3n+r}$.
For (3):
Let $x \in \mathbb{N}$. If $x=\ell k$ with $2 \nmid k$ then $\operatorname{Coll}_{3n+\ell}(x)=3\cdot \ell k+\ell= \ell( 3k+1) =
\ell \operatorname{Coll}(y)$, while if $x=2\ell k$ then $\operatorname{Coll}_{3n+\ell}(x)=\frac{x}{2}=\ell k= \ell \operatorname{Coll}(2k)$.
So for $x \in \ell \mathbb{N}$ the iteration of $\operatorname{Coll}_{3n+\ell}$ at $x$ behave like $\operatorname{Coll}$.
This give at least one cycle and shows that for $x \in \ell \mathbb{N}$, iteration of $\operatorname{Coll}_{3n+\ell}$ at $x$ will eventually reach $\ell$.
Now working $\pmod{\ell}$ we see that for $x \notin \ell \mathbb{N}$ if iteration of $\operatorname{Coll}_{3n+\ell}$ at $x$ give a cycle this cycle is disjoint from the cycle obtained by $\operatorname{Coll}_{3n+\ell}(\ell)$(Or by $\operatorname{Coll}_{3n+\ell}(y)$ for any $y \in \ell \mathbb{N}$, if we assume the truth of Collatz conjecture). This is because for $x \not\equiv 0 \pmod \ell$ we have $3x+\ell \equiv 3x \not\equiv 0 \pmod \ell$ and (for even $x$) $\frac{x}{2} \equiv x \frac{l+1}{2} \not\equiv 0 \pmod \ell$.
We see that case (2) is similar to the case (3),with the exception that the three in $3n+\ell$ makes the iteration of $\operatorname{Coll}_{3n+\ell}$ at $x$ to produce a multiple of $3$ whatever $x$ is.
In the following table I list:
In the first column values of $\ell$. In the second how many cycles $\operatorname{Coll}_{3n+\ell}$ I believe give and in third pairs $(y,z)$(see the example). The integers $y$ are those minimal integers s.t. iteration of the various $\operatorname{Coll}_{3n+\ell}(y)$ give all cycles of $\operatorname{Coll}_{3n+\ell}$. The integers $z$ are the smallest positive integers such that iteration of $\operatorname{Coll}_{3n+\ell}$ beginning at $z$ reach $y$.
$$
\begin{array}{|c|c|c|}
\hline
\ell & \text{Number of cycles} & (y,z) \\
\hline
1 & 1 & (1,1) \\ \hline
5 & 6 & (1,1),(19,3),(5,5),(23,23),
(187,123),(347,171)\\ \hline
7 & 2 & (5,1),(7,7)\\ \hline
11 & 3 & (1,1),(13,3),(11,11) \\ \hline
13 & 10 & (1,1),(13,13),(131,19),(211,99),\\
& & (259,123),(227,147),(287,159),\\
& & (251,163),(283,283),(319,319) \\ \hline
17 & 3 & (1,1),(23,9),(17,17)\\ \hline
19 & 2 & (5,1),(19,19)\\ \hline
23 & 4 & (41,1),(5,5),(7,7),(23,23)\\ \hline
25 & 8 & (7,1),(17,3),(5,5),\\
& & (95,15),(25,25),(115,115),\\
& & (935,615),(1735,855)\\ \hline
29 & 5 & (1,1),(11,3),(29,29),\\
& & (3811,2531),(7055,5859)\\ \hline
31 & 2 & (13,1),(31,31)\\ \hline
\end{array}$$
For example for $\ell=17$ we have three cycles. They are:
- $1\rightarrow20\rightarrow10\rightarrow5\rightarrow32\rightarrow\ldots \rightarrow 1$ of length 9,
- $23\rightarrow146\rightarrow73\rightarrow \ldots \rightarrow46\rightarrow23$ of length 49 and
- $17\rightarrow68\rightarrow34\rightarrow17$
For the second one $19$ is the smallest integer for witch $\operatorname{Coll}_{3n+17}$ will give this cycle.