It is unnecessary to modify the function since it is one-to-one and onto as proposed.
Show that $f(i,j)=i+\dfrac{(i+j-2)(i+j-1)}{2}$ is one-to-one and onto from $\mathbb{N}^2\,\to\,\mathbb{N}$, where $\mathbb{N}=\{1,2,3,\cdots\}$
The onto part is fairly simple since $\left\{\dfrac{(k-2)(k-1)}{2}\right\}_{k=2}^\infty$ is an increasing sequence in $\mathbb{N}\backslash \{1\}$ but achieves a minimum value of $0$ in $\mathbb{Z}$ when $k=1$ and $k=2$.
$$0,1,3,6,10,15,21,28,36,45,55,66,78,\cdots$$
For each $m\in\mathbb{N}$ define ${\langle m \rangle}=\max\left\{k:\frac{(k-2)(k-1)}{2}<m\right\}$ and let $i=m-\dfrac{({\langle m \rangle}-2)({\langle m \rangle}-1)}{2}$ and let $i+j={\langle m \rangle}$.
Then $f(i,j)=i+\dfrac{(i+j-2)(i+j-1)}{2}=i+\dfrac{({\langle m \rangle}-2)({\langle m \rangle}-1)}{2} =m$
Using this we can see that, for example
- $f(1,1)=1$
- $f(1,2)=2$
- $f(2,1)=3$
- $f(1,3)=4$
Or we can skip ahead and see that for $m=25$, ${\langle m \rangle}=8$ since $\frac{(8-2)(8-1)}{2}=21$ is the largest value of $\frac{(k-2)(k-1)}{2}$ smaller than $25$. So $i=25-21=4$ and $j={\langle m \rangle}-i=8-4=4$. Thus $f(4,4)=25$.
But what if, in the case of $m=25$ rather than letting $i+j={\langle m \rangle}=8$ we let $i+j={\langle m \rangle}-1=7$. Then $i=25-\frac{(7-2)(7-1)}{2}=10$ And since $i+j=7$ then$j=-3$ which is not in $\mathbb{N}$.
To show that the function $f$ is one-to-one it would be necessary to show that for $m\in\mathbb{N}$ if $i+j={\langle m \rangle}-p$ for some $p<{\langle m \rangle}-1$ where $i=m-\dfrac{({\langle m \rangle}-p-2)({\langle m \rangle}-p-1)}{2}$then it would be the case that $j\le0$. This is in fact the case.
Let
\begin{eqnarray}
j&=&{\langle m \rangle}-p+\frac{({\langle m \rangle}-p-2)({\langle m \rangle}-p-1)}{2}-m\text{ for }1\le p\le {\langle m \rangle}-2\\
&=&{\langle m \rangle}-p+\frac{({\langle m \rangle}-2-p)({\langle m \rangle}-1-p)}{2}-m\\
&=&\frac{({\langle m \rangle}-2)({\langle m \rangle}-1)}{2}+\frac{p^2-p(2{\langle m \rangle}-1)}{2}-m
\end{eqnarray}
Since this must be positive and since $\dfrac{({\langle m \rangle}-2)({\langle m \rangle}-1)}{2}-m<0$ then $\dfrac{p^2-p(2{\langle m \rangle}-1)}{2}$ must be positive for all values of $p$ in the interval $[1,{\langle m \rangle}-1]$. However, that is not the case since $\dfrac{p^2-p(2{\langle m \rangle}-1)}{2}\le0$ for every $p\in[0,2{\langle m \rangle}-1]$. So $j\le0$.
Thus $f$ is one-to-one and onto.
For $m\in\mathbb{N}$,
\begin{eqnarray}
f^{-1}(m)=\left(m-\langle m\rangle,\frac{3+\sqrt{1+8\langle m \rangle}}{2}-(m-\langle m \rangle)\right)
\end{eqnarray}
For example, find $f^{-1}(53)$.
$\langle 53\rangle=45$ so $i=53-45=8$ and $j=\dfrac{3+\sqrt{1+8(45)}}{2}-8=3$ so $f^{-1}(53)=(8,3)$ which can be verified by substitution back into $f$.