Prove that $\displaystyle\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=e^{-1}$.
Here's my solution:
Stirling's formula tells us $$\lim_{n\to\infty}\frac{n!}{n^ne^{-n}\sqrt{2\pi n}}=1$$which implies $$\lim_{n\to\infty}\sqrt[n]{\frac{n!}{n^ne^{-n}\sqrt{2\pi n}}}=1$$then simplifying the left side we have $$\lim_{n\to\infty}\sqrt[n]{\frac{n!}{n^n}}\lim_{n\to\infty}\sqrt[n]{e^{n}}\lim_{n\to\infty}\frac{1}{\sqrt[2n]{2\pi n}}=e\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=1$$ since $\lim_{n\to\infty}\sqrt[2n]{2\pi n}=1$. Divide both sides by $e$ and we're done.
Is this correct? This is a problem from Problems in Real Analysis by Radulescu and Andreescu. The book gives two other proofs. Thanks!